A remaining useful life prediction method based on LSTM-DCGAN for aero-engines
نویسندگان
چکیده
Abstract Turbofan engine is a key component in aerospace. Its health condition determines whether an aircraft can operate reliably. However, it difficult to predict the remaining useful life (RUL) precisely because of characteristics complex operating conditions and various failure modes. To RUL more accurately make full use advantages neural networks, prediction model based on long short-term memory network (LSTM) deep convolutional generative adversarial (DCGAN) proposed called LSTM-DCGAN this paper. In LSTM-DCGAN, DCGAN used obtain knowledge training dataset, then generator after pretraining attached LSTM for further feature extraction. The effectiveness validated C-MAPSS aero-engine degradation dataset compared with other methods.
منابع مشابه
A Similarity-based Prognostics Approach for Remaining Useful Life Prediction
Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimati...
متن کاملA Study on Remaining Useful Life Prediction for Prognostic Applications
We consider the prediction algorithm and performance evaluation for prognostics and health management (PHM) problems, especially the prediction of remaining useful life (RUL) for the milling machine cutter and lithium‐ion battery. We modeled battery as a voltage source and internal resisters. By analyzing voltage change trend during discharge, we made the prediction of battery remain discharge ...
متن کاملBayesian Approach for Remaining Useful Life Prediction
Prediction of the remaining useful life (RUL) of critical components is a non-trivial task for industrial applications. RUL can differ for similar components operating under the same conditions. Working with such problem, one needs to contend with many uncertainty sources such as system, model and sensory noise. To do that, proposed models should include such uncertainties and represent the bel...
متن کاملGear Remaining Useful Life Prediction Based on Grey Neural Network
The condition monitoring data of gears is asymmetric distributed, moreover, sampling is usually conducted discontinuously in practice. Thus makes it difficult to predict gear remaining useful life accurately considering the two reasons above. In this paper, a fusion method is proposed using Elman Neural Network to modify residual series of grey model since Elman Neural Network performs better o...
متن کاملData-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of data or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2591/1/012063